
Analyzing the Relationships between some Parameters of Web Services Reputation

Babak Khosravifar
Department of Electrical

and Computer Engineering
Concordia University

Montreal, Canada
b khosr@encs.concordia.ca

Jamal Bentahar
Concordia Institute for

Information System Engineering
Concordia University

Montreal, Canada
bentahar@ciise.concordia.ca

Ahmad Moazin
Concordia Institute for

Information System Engineering
Concordia University

Montreal, Canada
a moazi@encs.concordia.ca

Abstract—In this paper, we provide an analysis of the
impacts of some reputation parameters that an agent-based
Web service holds while being active in the environment. To
this end, we deploy a reputation model that ranks the Web
services with respect to their popularity in the network of
users. We model and analyze the arrival of requests and study
their impacts on the overall reputation. The Web services
may be encouraged to handle the peak loads by gathering
to a group. Besides theoretical discussions, we also provide
significant results, which elaborate more on the details of the
system parameters. We extend the details of these results to
empirical results and link the observations of the implemented
environment to the results that we theoretically obtain.

Keywords-Agent-based Web service; Reputation; Incentives;
Poisson Distribution;

I. I NTRODUCTION

The use of Web services is mostly motivated by devel-
oping loosely-coupled, cross-enterprize business processes
that process users’ requests. In environments with multiple
Web services, each Web service can be associated with
a software agent that acts on its behalf and oversees its
performance, commitments, and availability details that are
used for service selection [4]. In such environments, Web
services may face unavoidable problems such as overload,
poor responsiveness, or idle resources that a rational agent-
based Web service always tries to avoid. Therefore, a rational
agent acting as the intelligent structure of the Web service
would need to analyze the cases where such situations would
take place in order to predict their occurrences. One clue
would be gathering Web services to build a collaborative
virtual group calledcommunitythat aims to increase Web
services’ capabilities [8].

The Web service selection is competitive with respect to
the public reputation that Web services hold. This selection
process is mostly used in the existing applications where
handling users’ requests does not necessarily guarantee a
high service quality. In fact, users always consider the
quality of service (QoS) when they select a Web service.
Normally, in the existing applications, the offered QoS
is compared with the promised one and a corresponding
feedback reflecting users satisfaction is submitted by users.

Challenges. Excellent reputation is a double sword; it
can bring high demands from users, which can result in
overloading services, and this can cause a drop in overall
reputation. Therefore, it is important to seize the stable status
for a service to always hold an acceptable reputation since
the environment is dynamic. An efficient service aims to
handle the requests in a way that neither it gets overloaded
quickly, nor it remains idle. The ultimate objective of all
Web services is to tackle such a balance in which they carry
on their stable demands while they increase their popularity
in the network. For a single Web service, failing to respond
with an acceptable service quality (i.e., being overloaded)
would cause negative feedback and thus, reputation’s drop.
In the literature, there is a lack of systematic analysis and
studies of the dynamic relationships between the demand
and reputation of Web services. By helping agent-based Web
services to make good decisions, such analysis would help
in optimizing the performance of Web services in terms of
popularity in the network and resource usage.

Contribution. In this paper, we introduce a reputation
mechanism that let consumers select the Web services
having the best credibility. For simplicity reasons and to
achieve a high focus, we restrict the reputation model to two
crucial parameters: satisfaction and popularity and analyze
the impacts that these parameters have on one another in
continuous service selection processes (considering other
parameters is our plan for future work). In this mechanism,
we use thenon-homogenous Poisson[12] as the probability
distribution that models the arrival of requests for a typical
Web service (the motivations and reasons behind using this
distribution will be discussed in Section III). We aim to
theoretically analyze the impacts that parameters have on
one another and deduce cases where the Web service has
a clear incentive to change its acting strategy. For example,
the Web service might consider to initiate a group gathering
a set of collaborative Web services (or even join a pre-built
group) to reach some capabilities that it cannot achieve if
it acts alone (i.e. a high reputation may not be accessible
for some Web services if they act alone). In this analysis,
we tackle the general service reputation by considering two
factors: satisfaction and popularity (calledinDemandin this

paper). We represent the reputation as a result of popularity
and gained feedback (via users) on efficiency and accuracy
of previous provided services. In our implemented system,
we empirically elaborate on the inter-relation of the two
considered factors with the general reputation and show
their evolving values over time in the system using different
Web services with different acting strategies. Using these
relations, we analyze the efficiency of a group of Web
services working together compared to single Web services
in different aspects.

Originality. In the literature, the previous proposals ad-
dress the problems of developing, discovering, compos-
ing, deploying, and securing services. To the best of our
knowledge, there is no work done regarding the challenges
discussed above, which are about analyzing the relationships
between reputation factors of Web services in dynamic
environments where performance is a crucial factor. In this
paper, we address for the first time the theoretical analysis
of the relationship between users’s requests and reputation.
This allows us to analyze the performance of the Web
services that choose between two strategies: either, to work
alone, or to join a group where members can collaborate to
increase their capabilities.

Organization. The remainder of this paper is as follows.
In Section II, we define the reputation model using two
important metrics. In Section III, we start the discussion
about a Web service’s performance considering the overall
service quality. We base the discussions on the arrival of
requests that follow anon-homogeneous Poisson process.
We elaborate on inter-relation of involved metrics extract
their dependencies. In Section IV, we discuss some results
obtained from theoretical analysis of reputation parameters.
In Section V, we represent the simulation and outline the
properties of our model in the experimental environment.
Section VI discusses some relevant related work and finally,
Section VII concludes the paper.

II. REPUTATION MODEL

This section briefly introduces the reputation model that
we use in our analysis together with its related parameters.
Since our contribution in this paper is the theoretical and
empirical analysis over the parameters impacts on one
another, we do not detail the reputation assessment and only
focus on two involved parameters and their combination.
Note that the proposed metrics can be computed using users’
feedback when accurate data is available. However, in many
situations users are not always honest and the feedback can
be unprecise. For the purpose of our analysis, we represent
these metrics as they are computed (or estimated) by the
Web services using only accurate public data: the number
of received requests and the Web service’s capacity (also
called throughput, which is the number of requests a Web
service can handle per time unit). This approach is useful,

as it allows Web services to predict the future values of the
reputation parameters based on previous observations, and
then decisions can be made based on these predictions.

InDemand Metric: Let i be the Web service that is
under consideration. InDemand parameterinDi(t) (ranges
between0 and1) is a component that depicts users’ interests
in this Web service in comparison with other Web services
at time unitt (also calledmarket share). Let Reqi(t) be the
total number of requests sent for Web servicei at time unit
t (Reqi(t) ≥ 0). Considering allM active Web services in
the network, the inDemand is computed in equation 1.

inDi(t) =
Reqi(t)∑M

k=1 Reqk(t)
(1)

Satisfaction Metric: This is the parameter reflecting the
users’ rated value regarding their satisfaction of the obtained
service from the Web servicei at timet (Sati(t)). Usually,
this parameter is measured via users’ submitted feedback.
As discussed before, we are interested here in its estimation
from the Web services’ point of view considering its capacity
(i.e. throughput) and the number of requests at time unitt.
This estimation can be then considered as a prediction of
users satisfaction.Sati(t) is also set between0 and1.

In our analysis, we restrict ourselves to honest Web
services in the sense that they provide the best of their
QoS once they can handle all the received requests. This
restriction is justified by the fact that our objective is not
to compare honest and malicious Web services, but to help
Web services to make good decisions regarding their acting
strategy about how to balance reputation and market share.
This means that, if the demand for a Web service is less than
its capacity value (Capi), then the Web service is capable of
offering its actual QoS. To this end, the satisfaction rate that
a Web service obtains is actually weighted with a factor that
reflects the extent to which its capacity is below the received
requests. In this case, the Web service would receive rate of
100% for the users who received the QoS as promised (the
number of these users are equal toCapi). The Web service
would also receive0% for the users who are rejected and
thus, do not receive the QoS as promised. Therefore, the
average would beCapi

Reqi(t)
. Equation 2 computes the general

reputation assessment for a typical Web servicei.

Sati(t) =
{ Capi

Reqi(t)
, if Capi < Reqi(t);

1 if Capi ≥ Reqi(t).
(2)

Consider the first case in equation 2, whereCapi <
Reqi(t). In this case, the Web servicei is overloaded and
thus, the number of received requests is more than its
actual capacity. Continuing in this situation would obviously
lead to its reputation drop. However, in the second case
whereCapi > Reqi(t), the resources are considered idle,
which implicitly expresses the low inDemand and thus, low
reputation again. The case whereCapi = Reqi(t) is very

rare since these values are normally very dynamic. The
challenge is then how to achieve a stable situation.

Metric Combination. As discussed earlier, the involved
factors have impact on the total reputation that a Web
service holds and uses as a mean to absorb users at the
next time unitt + 1. Therefore, the combination would set
the Repi(t + 1) value. In this case, there is a weight that is
assigned to each component, which reflects its importance.
The reputation value also ranges between0 and1. Equation
3 combines the involved factors (satisfaction and inDemand)
with the assigned weights (χ and1−χ). The weighted coeffi-
cients are set with respect to the environment characteristics
and they are application-dependent. However, in reputation
mechanism, the metrics are weighed in general and used in
discussions to have their corresponding influences.

Repi(t + 1) = χ Sati(t) + (1− χ)inDi(t) (3)

III. A NALYZING WEB SERVICEREPUTATION

PARAMETERS

The main issue we aim to address in this paper is
whether, in a specific situation, an active Web service is
capable of surviving in highly requested environments (i.e.
the requests are relatively higher than the Web service’s
capacity and thus, the Web service cannot hold and maintain
high reputation). On the other hand, there is the activity issue
of the Web service when the number of requests is less
than its capacity and thus, the Web service does not hold
a relatively high inDemand. The objective is to identify the
situations within which the Web service can act safely in
the sense that it has enough capacity to serve the consumers
and the holding resources are effectively utilized.

In this section, we discuss the aforementioned issues and
theoretically identify and analyze the possible situations. In
this analysis, we will identify the relations that the involved
reputation factors have with one another. For example,
we will analyze the relation between the inDemand and
reputation, which indicates the fact that if a Web service
obtains a high reputation, the mean number of requests for
that Web service would increase over the time. Furthermore,
the increase of the inDemand would cause a negative impact
on the satisfaction rate in the sense that handling a high
number of requests would be harder. Although these results
are expected, our work is the first attempt in formalizing this
issue and confirming it both theoretically and practically.
The main objective is to encourage the increase of Web
services capabilities by gathering these Web services into
a group having the same functionality. To this end, in the
following, we discuss in more details the relations that link
the reputation model parameters together.

A. Service Request

The metrics discussed in Section II are based on the
number of requests sent by the users (service consumers). To

have a general analysis of different possible situations and to
better predict the future, we need to model the dynamics of
the arrival of these requests and compute the probability of
having given numbers of these requests. For a typical Web
servicei, the service requests can be modelled as random
variables under the form of discrete events that follow
a Poisson distribution. Poisson distribution is a discrete
probability distribution that expresses the probability of a
number of events occurring in a fixed period of time. The
expected number of occurrences (i.e. the requests in our
case) is referred to as thePoisson rate λ. As defined in
Poisson distribution, the probability of having exactlyn
requests is defined as the functionz(n).

z(n) =
e−λ × λn

n!
=

λn

eλ × n!
However, this distribution assumes that the events occur

independently of the time since the last event. This assump-
tion means in our setting that requests are independent of the
Web service reputation, which changes with time. To better
model the dynamics of requests that depend on reputation,
we use thenon-homogeneous Poisson process[12], which
is a Poissonprocess with dynamic rateλi(x) denoting the
mean number of requests received by Web servicei at time
momentx, where x belongs to the time unitt. Here we
should distinguish between the time unitt (i.e. the interval
[1, t]) and time momentx in the sense that the moment is
inside the time unit. The rateλi(x) is a function of time,
which means the number of requests can change every time
momentx. However, the reputation is supposed to be stable
with regard to the time momentsx (i.e. stable for a certain
period of time), but changes from one time unit to the next
one. The arrival of requests for Web servicei during the
time unitt (mi(t)) can be formulated as anon-homogeneous
Poisson processas follows.

mi(t) =
∫ t

1

λi(x)dx (4)

In this case, the probability of having exactlyn requests till
time unit t is computed in Equation 5.

p(mi(t) = n) =
(mi(t))

n

e(mi(t)) × n!
(5)

As described before, the rateλi(x) is dependent of timex
and represents the mean number of requests at time moment
x. This rate should be estimated either using real data and
statistical methods such as themaximum likelihood, or using
analytical formulations. In this paper, we use an analytical
estimation based on the assumption that in a network of
Web services with active users, the mean number of requests
would mainly depend on the status that the Web service
holds among other services in the network. Regarding this
issue, we relate this mean to the portion of reputation that the
Web service holds at time unitt considering the other Web

services in the same network since the number of requests
for one Web service reflects, in some extent, the market
portion of this service. LetTRep and Qx respectively be
the sum of total reputation of all the Web services during
the whole time units and the sum of all the received requests
by all the Web services at time momentx. Therefore, the
rate can be computed as shown in Equation 6. As discussed
before, the reputation of a given Web service is stable during
the time unit. However, the total number of requests is
moment-dependant.

λi(x) =
Repi(t)
TRep

Qx (6)

Using Equations 4 and 6, the arrival of requests during the
time unit t (mi(t)) is recomputed in Equation 7. Because
the reputation is not a function of the momentx, we take
the fraction out of the integral as constant.

mi(t) =
∫ t

0

Repi(t)
TRep

Qxdx =
Repi(t)
TRep

∫ t

0

Qxdx (7)

Therefore, the probability of having exactlyn requests
(formulated first in Equation 5) is recomputed in Equation
8.

p(mi(t1) = n) =
(Repi(t)

TRep

∫ t

0
Qxdx)n

e(
Repi(t)
T Rep

∫ t
0 Qxdx)(n!)

(8)

The expected number of the received requests for a Web
service i at time unit t (i.e the mathematical expectation
[Reqi(t)]) can be now computed as shown in Equation 9.

[Reqi(t)] =

Qx∑
Rq=1

p(mi(t) = Rq)×Rq

⇒ [Reqi(t)] =

Qx∑
Rq=1

(Repi(t)
TRep

∫ t

0
Qxdx)Rq

e
(

Repi(t)
T Rep

∫ t
0 Qxdx)

(Rq!)
×Rq (9)

B. Expected inDemand, Satisfaction and Reputation Func-
tion

There is a general assumption that the reputation of a
Web service has impact on the market share. In fact, service
consumers normally seek for the best service (or at least
better alternative) rather than sticking to the same service
even if the QoS is acceptable (i.e. if the user is satisfied
with a services1, he might prefer to request another similar
service s2 if it provides better QoS). In Equation 1, we
showed that the inDemand value of a Web servicei is
calculated with respect to the portion of the requests to this
Web service to the sum of all requests received by all the
Web services in the same network (Qt =

∑M
k=1 Reqk(t)).

We also computed the expected requests received by the Web
servicei during the time unitt. Therefore, we can compute
the expected inDemand rate for a Web servicei as shown
in Equation 10.

[inDi(t)] =
[Reqi(t)]

Qt
(10)

Similarly, in Equation 2, we defined the obtained satis-
faction rateSati(t) by the Web servicei. Therefore, the
expected rate would be recomputed as shown in Equation
11.

[Sati(t)] =
{ Capi

[Reqi(t)]
, if Capi < [Reqi(t)];

1 if Capi ≥ [Reqi(t)].
(11)

Therefore, we can recompute the reputation of a Web
servicei as a function of the expected value of the number
of requests. Obviously, the value for the function would
be the expected value announced for the next time unit
t + 1 (Repi(t + 1)), which reflects the prediction of future
reputation. LetCase1 stand forCapi < [Reqi(t)] andCase2
for the opposite.

Repi(t+1) =

{
χ(Capi

[Reqi(t)]
) + (1− χ)([Reqi(t)]

Qt
) Case1;

χ(1) + (1− χ)([Reqi(t)]
Qt

) Case2.
(12)

Concerning the reputation value, we need to analyze the
cases where the reputation function is increasing and the
cases where the function is decreasing. To this end, we
compute the derivative of the obtained function with respect
to time t in Equations 13 (Case1) and 14 (Case2).

dRepi(t + 1)
dt

=
−χCapi

[Reqi(t)]2
d[Reqi(t)]

dt
+

(1− χ)
Qt

d[Reqi(t)]
dt

⇒ dRepi(t + 1)
dt

= (
(1− χ)

Qt
− χCapi

[Reqi(t)]2
)
d[Reqi(t)]

dt
(13)

or ⇒ dRepi(t + 1)
dt

= (
(1− χ)

Qt
)
d[Reqi(t)]

dt
(14)

The expected number of requests is expanded in Equation
15. In deriving the fraction in the right hand side, the quo-
tient rule is used to differentiate the fraction part and thus,

the parametere
Repi(t)
T Rep

∫ t
0 Qxdx is factored and simplified.

There are two parts on the numerator that we separated
to clarify the fraction. The parameter[R′] computed in
Equation 16 is the chain derivative of theRepi(t)

TRep

∫ t

0
Qxdx.

The parameter[Y] is denoted as the factored out values
represented in Equation 17.

d[Reqi(t)]
dt

=
Qx∑

Rq=1

Rq

Rq!

d[
(

Repi(t)
T Rep

∫ t
0 Qxdx)Rq

e
Repi(t)
T Rep

∫ t
t Qxdx

]

dt

d[Reqi(t)]

dt
=

Qx∑
Rq=1

Rq

Rq!

[R′][(Repi(t)
TRep

∫ t

0
Qxdx)Rq−1][Y]

e
Repi(t)
T Rep

∫ t
0 Qxdx

(15)

[R′] =
dRepi(t)

dt

∫ t

0
Qxdx + QtRepi(t)
TRep

(16)

[Y] = Rq − Repi(t)
TRep

∫ t

0

Qxdx (17)

Before we continue in the next section on the detailed
discussions, we can observe that the obtained sign for
d[Reqi(t)]

dt depends on two factors:[R′] and [Y]. The rest
of the values in Equation 15 are positive and do not affect
the sign. Therefore, we need to investigate the cases where
these parameters have different signs.

IV. D ISCUSSIONS

In this section, we discuss the observations we obtain
through the corresponding relations between reputation pa-
rameters. Regarding this issue, we need to differentiate
between two cases: (1) the Web servicei is considered as
an overloaded service (Capi < [Reqi(t)]); and (2) the Web
servicei is considered as an idle service where its resources
are not appropriately used (Capi > [Reqi(t)]).

Case (1).This is the case where the Web service receives
more requests than its actual capacity and thus, it is hard to
handle the overloaded requests. Therefore, the satisfaction
rate that the Web service receives is set as[Sati(t)] =

Capi

[Reqi(t)]
(see Equation 11). According to Equation 13, we

estimate the rate of change of the reputation with respect to
time (through the derivative). There are two parts in this
equation. The first part represents a value that is based
on different system parameters. We observe that in large
networks of different Web services, this part holds a negative
value. To show that, we need to expand the following
inequality:

(1− χ)
Qt

− χCapi

[Reqi(t)]2
< 0 ⇒ (1− χ)

Qt
<

χCapi

[Reqi(t)]2

⇒ Qt > ν where ν =
(1− χ)

χ

[Reqi(t)]2

Capi

This inequality indicates thatQt has a lower boundary
ν given that Capi < [Reqi(t)]. We can then conclude
that when the number of requests is large enough the rate
of change (i.e. the slope sign) of the reputation function
would follow the opposite direction of the request (the two
derivatives have different signs). This means the increase of
number of requests would cause the decrease of reputation
when the number of requests is greater than the Web
Service’s capacity.

Proposition 1. In Case1, whereQt > ν, a positive rate of
change of Web service’s reputation function in the current
time unitt would cause a negative rate of change in the next
time unit t + 1.

Proof: The proof is based on Equation 13. In this case,
the increase of expected request[Reqi(t)] would cause a de-
crease in the reputation function. Therefore, we should prove

that the rate of change of the expected request computed in
Equation 15 is positive. In this equation, there are different
parts. All the parts are always positive expect[Y] and [R′].

The factor[Y] would be negative whenRq < mi(t) (see
Equation 17). SinceRq ranges between1 and Qt (in the
sum), it is clear that[Y] is a positive value. In fact, in the
sum, the negative values would not have any impact given
that Rq values are small in this case. Therefore, we only
need to consider the factor[R′]. Since theRepi(t) rate of
change is positive in this case, this factor is also positive
(See Equation 16). Therefore, we obtain a positive rate of
change for[Reqi(t)], which causes a negative rate of change
for the next time unit.

Proposition 2. In Case1, if Qt > ν, a bounded negative
rate of change of Web service’s reputation function in the
current time unitt would still cause a negative rate of change
in the next time unitt + 1.

Proof: This proof is the extension of the previous
proposition regarding to the[R′] factor. In this case, a
negative rate of change forRepi(t) would not necessarily
cause a negative value for[R′]. Since the denominator is
always positive, we only need to consider the case in which
the numerator is still positive even with a negative value of
dRepi(t)

dt . To this end, we obtain a new boundary for this
case:

|dRepi(t)
dt

| < µ where µ =
QtRepi(t)∫ t

0
Qxdx

Empirically, the obtained boundary is close to1. This
denotes the fact that a very small rate of change (even
negative) would still cause a reputation drop in the next
time unit.

Obtaining the two thresholds, we can discuss about this
category of Web services that receive exceeded requests. The
rate of change of the reputation function in current time unit
would affect the next time unit in the sense that its positive
or negative value (if|dRepi(t)

dt | > µ) would cause a negative
rate of change. The negative rate of change with a larger
absolute value would cause a negative rate of change of the
expected request and thus, a positive rate of change of the
reputation for the next time interval. However, that would
be temporary in the sense that the next time unit would
still face reputation drop. Therefore, we observe an unstable
reputation value for the Web services having high expected
requests and belonging to networks that are generally active
with high request rateQt > ν.

Case (2).This is the case where the Web service receives
fewer requests than its actual capacity ([Reqi(t)] < Capi).
In this case, the Web service sets its maximum expected
satisfaction rate ([Sati(t)] = 1). However, the Web service
is idle in this case. In general, to handle an idle situation, a
Web service can try to increase its participation in serving

Figure 1. Network representation (Left): Network of Web services and
users. Characteristics of Web servicei (right): The plot of reputation versus
the received request of Web servicei.

consumers. In this case, the rate of change of the reputation
would follow the direction of the rate of change for the
expected requests (see Equation 14).

Proposition 3. In Case2, a positive rate of change of the
Web service reputation function in the current time unitt
will cause a positive rate of change in the next time unit
t + 1 (regardless ofQt value).

Proof: As it is clear from Equation 14, the rate of
change of the expected request in the current time unit
t has the same direction as the rate of change of the
reputation function in the next time unitt + 1. In this case,
if |dRepi(t)

dt | > µ, the [R′] factor will be still positive, which
causes a positive rate of change for the expected request
function.

V. EMPIRICAL OBSERVATIONS AND ANALYSIS

In this section, we elaborate the observations that we have
in the empirical results. We aim to point out the theoretical
results that we obtained in theoretical discussions. Due to
space limit, we skip the extension of the results to analyze
the Web service’s behaviors in diverse systems, and limit
the empirical analysis to the system observations. These
observations to some extend reflect the theoretical analysis
discussed in Section IV. In the implemented environment,
we have many users that are randomly distributed in the
network and by default seek for the best service provider.
These users are implemented as Java agents and their imple-
mented prototype let them to analyze the received QoS and
submit the satisfaction feedback accordingly. Since there is
a public logging file for these, we restrict our discussions to
honest feedback submission and thus, consider the reputation
assessment accurate. In the implemented prototype, we are
interested in analyzing the affect that system parameters
impose on one another and investigate their evaluation over
time.

Similar to users, the implemented Web services are acti-
vated with intelligent agents that are capable of computing
the Web services’ public reputation parameters. These Java
agents are also capable of reasoning in order to select

Table I
ENVIRONMENT SUMMARIZATION OVER THE OBTAINED

MEASUREMENTS.

Users WS In/Out QoS Cap Req

N(2000,20) N(200,10) N(100,3) N(0.5,0.5) N(10,5) Pois(10)

their strategy of acting in the environment with diverse
parameters. The reasoning technique let agents to analyze
the overall performance of the Web services they belong to.
This could help changing a strategy if needed. The strategies
and their details are out of scope if this paper. However, to
illustrate the obtained results and their impact over time, we
need to implement them (although for the space limits we
skipped their detailed explanations).

Table I summarizes the simulated environment which
is populated with users and Web services scattered in
the system. User distribution follow a normal distribu-
tion N(2000, 20). We have Web services that are acti-
vated following normal distributionN(200, 10). There is
an input/output rate for Web services reflecting their ac-
tive/deactive rate for the Web services. This would keep the
environment more dynamic. The assigned QoS for the Web
services also follow a normal distribution that guarantees
any kind of QoS. With a normally distributed capacity for
Web services we have arrival of requests following Poisson
distribution.

In Figure 1, we have some generalities in the network of
active Web services. In the left part, we have a network
of the Web services that are surrounded with the users
that request services from them (or connected to them for
services). This is a snapshot from a part of the network
that shows the distribution of users and their interactions
with different Web services of diverse capabilities. In this
network, the high quality Web services can handle larger
number of users compared to the ones of lower capacities.
In this network, we also have a part that Web services
act in a joint manner such that they share their users to
increase their capabilities. As mentioned before, the details
of this framework is skipped. In the right part, we have
a plot in which, the reputation is shown in X-axes versus
the received request value shown in Y-Axes. In this graph,
the received request of all the Web services are counted.
Web services hold diverse reputation values. Each one also
receive a number of requests accordingly. For example, if
there are10 Web services that hold the system reputation
of the same value, the Y-value would reflect the received
request value for all of them. We observe the increase of
reputation and request such that the increase of reputation
would not necessarily increase the request and that depends
of some other parameters in the system. As it is deductable
from the graph, the reputation between values0.4 and0.75
would receive relatively high requests. The reason behind
this is discussed in propositions in Section IV. The high

reputation value is not stable and the Web services with
temporary high reputation values would loose a portion of
their users.

We continue our discussions in more details by comparing
how the aforementioned parameters evolve over time. In
Figure 2, the reputation level of a typical Web servicei is
depicted inplot(k) while the horizontal line representsi’s
capacity (Capi). In this plot, characteristic of Web service
i is measured to observe its cooperative parameters impacts
over time units. There are four different time intervals
regarding the reputation change of rate. In time intervalI1,
InDi is less thanCapi, therefore, the Web service belongs
to Case2. In this case, the positive rate of change for
reputation brings positive rate of change for its requests (in
plots, we have shown theInDi rate, which represents the
percentage of total requests triggered for the Web service).
The interval I2, is the most preferable time interval for
the Web service as a service provider. That is the time
where, the reputation rate of change is still positive, and
so as its demand. Therefore, the Web service absorbs lots
of users as they are shown in dot points around reputation
graph, surrounding the Web service in the network. In this
interval, the Web service belongs to case1. Therefore, the
positive rate of change will not last long. The maximum
difference (in terms of percentage) that the Web service
obtains betweeb its capacity and inDemand value is denoted
as d at the end of intervalI2. This is out of scope of
the discussions, but it is worth saying that the malicious
Web services who aim to maximize their selfish goals,
this value would be maximized. As it is obvious from the
graph, in IntervalI3, the reputation (of the next time unit)
is head down with negative rate of change. This is the
affect discussed in proposition1. This is the interval that
an intelligent Web service always avoids in the sense that
the users are dispersed (as shown by dots), and the reputation
is decreasing. This would impose a negative affect inInDi

value in the sense that it undergoes the Web serviceCapi

value. This situation needs some time that the Web service
could absorb users again, and it is shown in the graph,
the reputation rate of change approaches a small number
(negative though) after certain number of system RUNs.
The corresponding graphs inplot(l) shows the evolution
of the satisfaction together with the demand rate for the
Web service. In this case, the total demand for the system
exceeds the threshold defined in case1 (Qt > ν). Therefore,
the affect it makes on the Web service reflects a large scale
network that the Web service as a service provider would
loose its users if it cannot handle them and it takes quite
number of system RUNs that the Web service could re-
absorb the users for serving its service.

In Figure 3, we have the similar scenario but for the net-
work where the total requests does not exceed the threshold
(Qt ≤ ν). In this case, the affect the reputation parameters
make on one another are different in the sense that the rep-

Figure 2. Evolution of cooperative parameters for Web servicei over time
whenQt > ν.

Figure 3. Evolution of cooperative parameters for Web servicei over time
whenQt ≤ ν.

utation rate of change is relatively slower than the previous
case (comparingplot(m) with plot(k)). The absorbtion of
users is also more stable and looks the Web service has
more time to handle the users. In this case, the Web service
in intervalI1 is in case2 and thus, the positive rate of change
for the reputation would bring more users. The request also
has a positive rate of change. But, in intervalI2, the Web
service is in case1. Therefore, the increase of reputation
is not stable and as the satisfaction starts to decrease, the
requests are also heading down (users start to disperse), and
therefore, the reputation gets a negative rate of change (small
though).

The affects in this graph reflects the facts that in small
scale networks, the Web services have more time to recover
their incapabilities, but in large scale networks, an intelligent
Web service should be aware of the fact that increase
of reputation would be not stable and may cause loss of
many users. Therefore, in such networks, the Web services
might consider join to other Web services to increase their
capabilities.

VI. RELATED WORK

In the literature, the reputation of Web services has been
intensively stressed [11]. In [2], the authors have developed
a framework aiming to select Web services based on trust
policy that users express. The framework allows the users to
select a Web service matching their needs and expectations.
In [9], some Web services reputation mechanisms have been
proposed, that would lead to an effective service selection.
Regarding to this service selection, there are also some
algorithms proposed to manage a high performance service
delivery platforms [3]. All these models address the repu-
tation in environments where Web services function alone.
In these models, Web service performance is not discussed

in details and in general, handling is not considered as an
issue for Web service besides its reputation.

Recently, some proposals have been done regarding for-
mation (and reputation) of communities of Web services [5],
[6]. In [6], Elnaffar et al. propose a reputation-based archi-
tecture for communities and classify the involved metrics
that effect the reputation of a community. However, they do
not investigate the cases where the community is initiated.
In [7], [8], the authors mainly address the overall assessed
reputation that is used as a main reason for service selection.
The authors do not consider handling as a parameter that
impacts service selection in future.

Regarding Web service performance, there have been
some frameworks that are mainly characterized with their
combination into a group or a cluster. In [1], authors propose
an architecture for filtering and clustering Web services. This
architecture is aimed to save time execution and increase
the performance in using data. In [10], authors propose a
statistical clustering Web service structure that enhances the
capability to retrieve services that match users’ requirements
in large-scale environments. In general, these approaches ad-
dress the service selection and assignment using clustering.
However, they do not consider the performance of handling
users and the relation between this performance and the Web
services reputation.

To the best of our knowledge, there is no theoretical
analysis on the performance of Web services in diverse
network situations like the one proposed in this paper. The
ultimate objective is to equip Web services with reasoning
capabilities allowing them to choose among different acting
strategies. The reasoning technique would help the Web
services to increase their overall performance in dynamic
networks.

VII. C ONCLUSION

The contribution of this paper is on the analysis that
we provide for the affect of reputation parameters for Web
service as service providers in dynamic environments. We
are interested in inter-relation of the reputation parameters
and how the intelligent agent can be aware of the impacts
that are imposed from the environment that encourage him
to follow a course of action. We also elaborate more on the
results that we obtain theoretically and observe empirically.
The analysis performed in this paper is the first theoretical
and empirical work that takes into account the system
parameters and provokes intelligent movements for Web
services.

Our plan for future work is to advance the discussion to
analyze the concept of join in a more systematic way. We
need to extend the framework that considers the join from
two perspectives: Web service to the group, and acceptance
of the group for the join. Regarding this, we could investigate
the benefits for each party with defining a game between
the joining Web service and the group. In the performance

analysis, we need to elaborate more on the reputation and
request values of the Web services active in different time
slots. We also need to compare the results with other
frameworks or with the Web services of the same framework
but with different capabilities. Similarly, we need to discuss
more about the group that could refuse to accept the join of
a single Web service.

Acknowledgments. Jamal Bentahar is supported by
NSERC (Canada) and FQRSC (Quebec).

REFERENCES

[1] W. Abramowicz, K. Haniewicz, M. Kaczmarek, and D.
Zyskowski. Architecture for Web services filtering and cluster-
ing. In proceeding of the International Conference on Internet
and Web Applications and Services (ICIW 2007).

[2] A.S. Ali, S.A. Ludwig, and O.F. Rana. A cognitive trust-based
approach for Web service discovery and selection. In Proc. of
the 3’rd European Conf. on WS, pp. 38-40, ECOWS 2005.

[3] M.K. Agarwal. Performance Management for Large Scale
Service Delivery Platforms. In Proc. of IEEE International
Conference on Services Computing, pp. 120-127, SCC 2009.

[4] E. Al-Masri, and Q.H. Mahmoud. Identifying Client Goals
for Web Service Discovery. In Proc. of IEEE International
Conference on Services Computing, pp. 202-209, SCC 2009.

[5] J. Bentahar, Z. Maamar, D. Benslimane, and Ph. Thiran. An
argumentation framework for communities of Web services. In
IEEE Intelligent Systems, 22(6):75-83, 2007.

[6] S. Elnaffar, Z. Maamar, H. Yahyaoui, J. Bentahar, and Ph.
Thiran. Reputation of communities of Web services - prelim-
inary investigation. In Proc. of the 22’nd IEEE Int. Conf. on
Advanced Inf. Networking and App., pp. 1603-1608, AINA
2008.

[7] B. Khosravifar, J. Bentahar, A.Moazin, and P. Thiran. An-
alyzing Communities of Web Services Using Incentives. In
International Journal of Web Services Research (IJWSR), 7(3),
2010.

[8] B. Khosravifar, J. Bentahar, P. Thiran, A.Moazin, and A. Guiot.
An approach to incentive-based reputation for communities of
Web services. In Proc. of IEEE 7’th International Conference
on Web Services, pp. 303-310, ICWS 2009.

[9] E.M. Maximilien and M.P. Singh. Conceptual model of Web
service reputation. SIGMOD Record 31(4):36-41, 2002.

[10] Ch. Platzer, F. Rosenberg, and Sh. Dustdar. Web service clus-
tering using multidimensional angles as proximity measures.
ACM Transactions on Internet Technology (TOIT), 9(3) Article
11, 2009.

[11] S. Rosario, A. Benveniste, S. Haar, and C. Jard. Probabilistic
QoS and soft contracts for transaction based Web services.
IEEE Int. Conf. on Web Services, pp. 126-133, ICWS 2007.

[12] F. Ruggeri and S. Sivaganesan. On Modeling Change Points
in Non-Homogeneous Poisson Processes. Statistical Inference
for Stochastic Processes 8(3):311-329, 2005.

